Proteomics Data Analysis

Simon Andrews V2024-10

Course Content

Principles of Mass Spectrometry

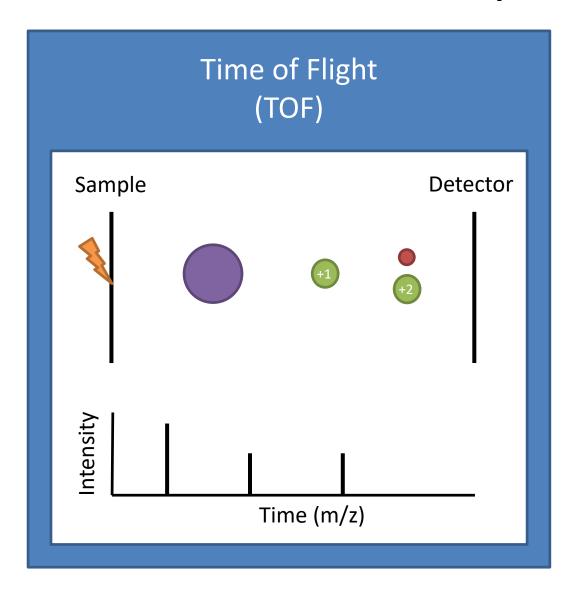
Types of Quantitative MS

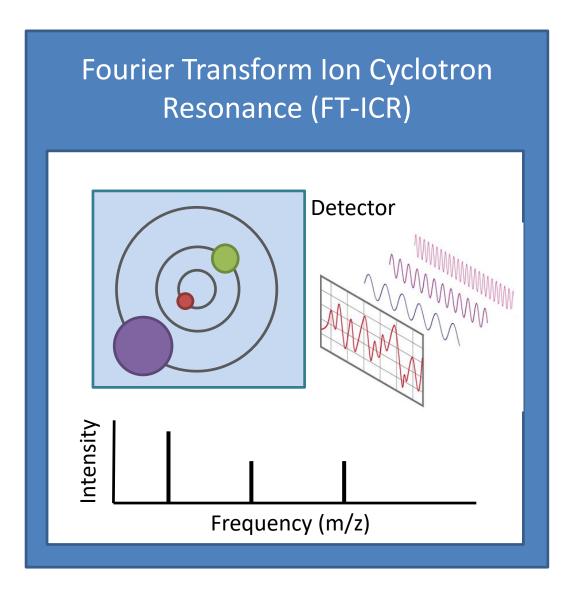
- Processing MS Data
 - Running searches
 - Evaluating Quality Control

- Analysing MS Data
 - MSstats Shiny
 - MSstats in R
 - Data import
 - Quantitation and normalisation
 - Differential abundance

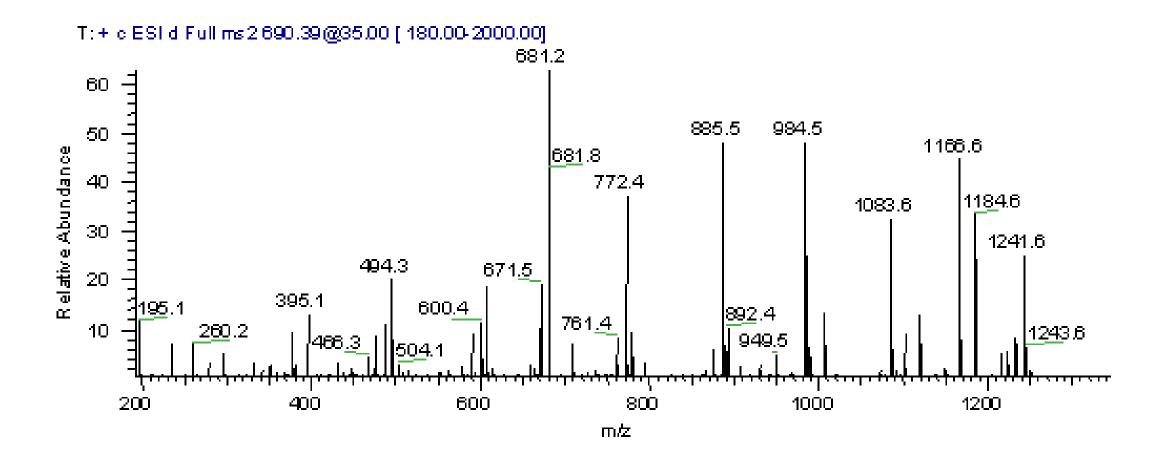
Related Courses

- Introduction to R
- Advanced R
- GGplot
- Statistics with R

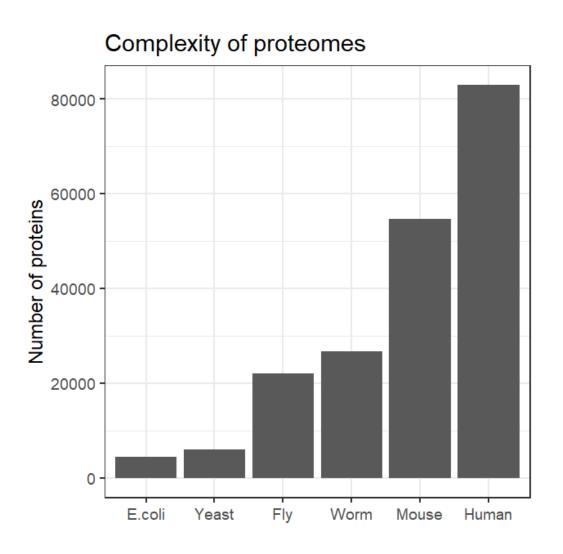



Interpreting Gene Lists

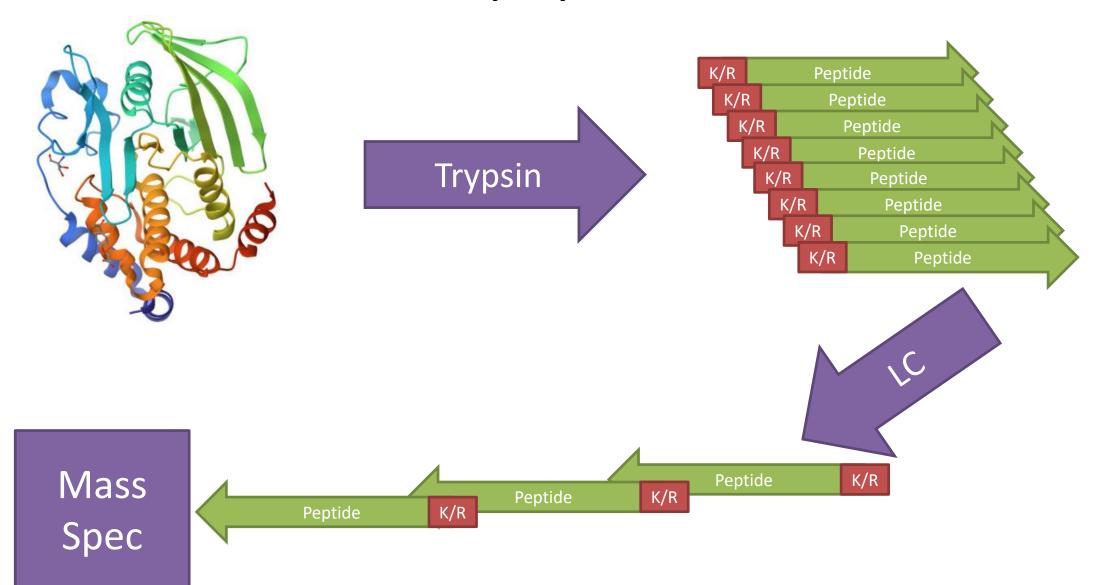
Principles of Proteomics Mass Spec



How mass spectrometers work



A typical mass spectrum



Measuring whole proteomes

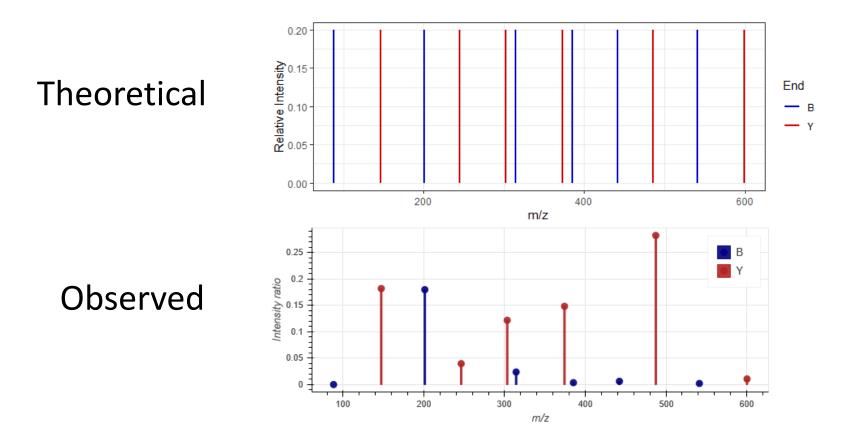
- Whole proteins are so complex they are difficult to identify when processed whole
- Proteome samples are typically too complex to put all proteins into the machine at the same time
- Need to find a way to measure data for a complex proteome

"Bottom-up" proteomics

Mass Spectrometry

SILAGVK 686Da

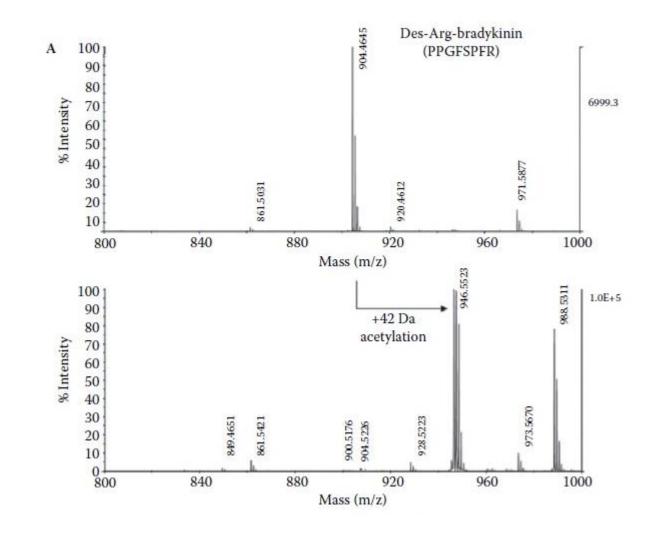
KVGALIS 686Da

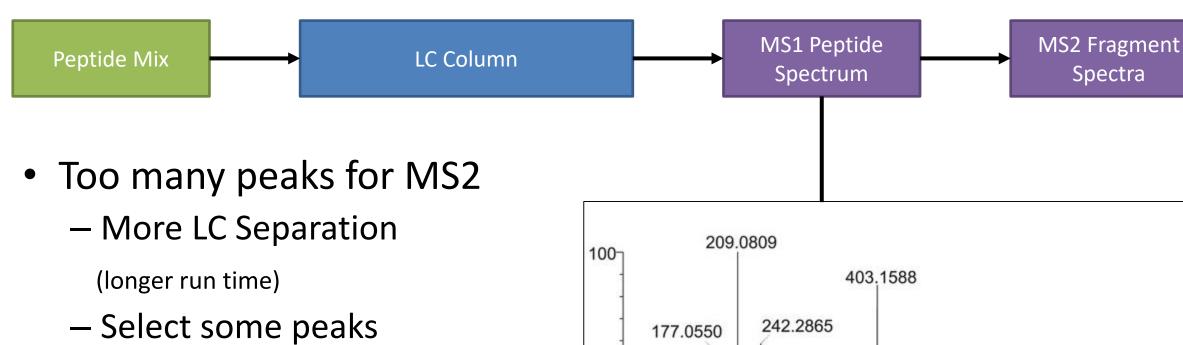

VLAGISK 686Da

Just knowing a peptide's mass isn't enough to identify it

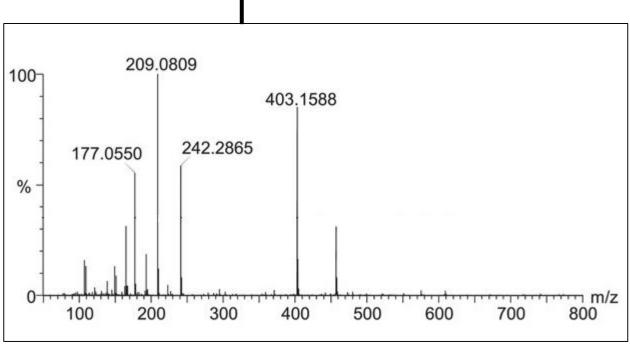
Tandem Mass Spectrometry

```
686Da SILAGVK
541Da SILAGV K 147Da
442Da STLAGVK 246Da
385Da STLA GVK 303Da
314Da SIL AGVK 374Da
201Da SI LAGVK 487Da
88Da S ILAGVK 600Da
```


Peptide MS2 Spectra


Searches are not performed by inferring sequence from spectra, but by scoring matches to predicted spectra

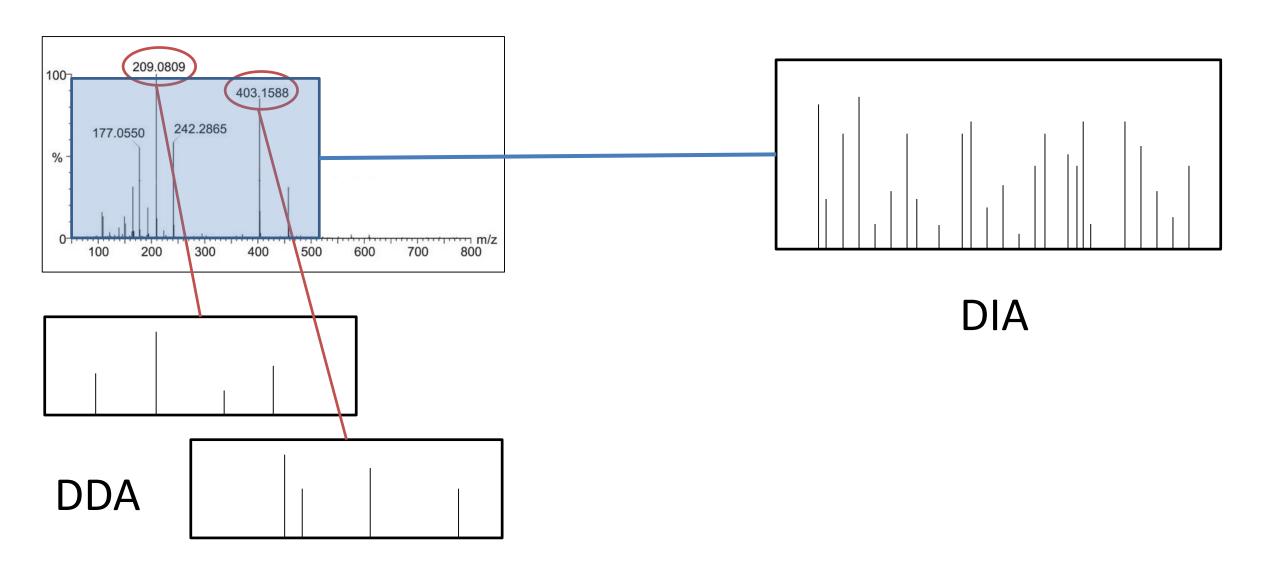
Measuring Modifications


- Acetylation
- Formylation
- Met Oxidation
- Phosphorylation
- Ubiquitination
- Glycosylation

Problems with bottom up proteomics

- (ignore others)
- Mix peaks for MS2 (messy data)

DDA vs DIA


Data Dependent Acquisition (DDA)

- Pick the strongest peaks from MS1
- Pass them individually to MS2
- Clean MS2 spectra
- Smaller peaks missed lower coverage
- Different peaks picked in each run
 - Missing values
 - Noise

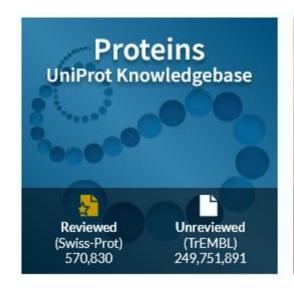
Data Independent Acquisition (DIA)

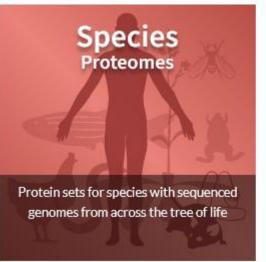
- Pick all peaks from MS1 (MZ range)
- Pass them simultaneously to MS2
- Mixed MS2 spectra
- More difficult spectrum matching
- Higher coverage
- More complete coverage

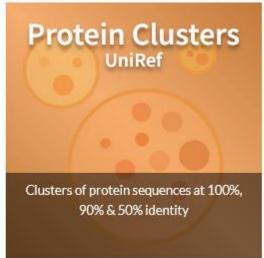
DIA vs DDA

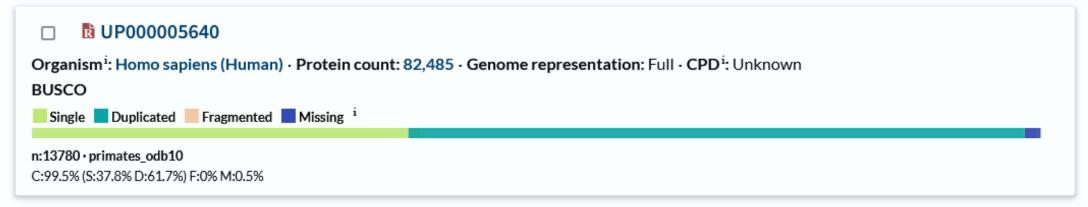
Identifying Proteins from spectra

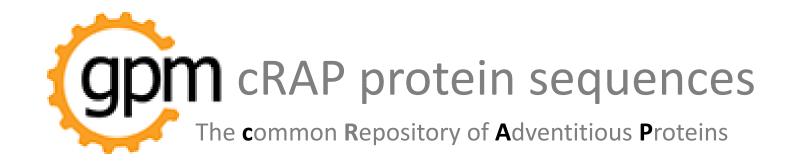
Database Searching

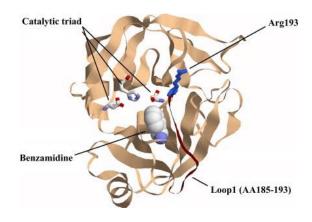



DIA-NN


- Protein Identification (with confidence)
- Abundance Quantitation
- Downstream analysis


https://www.uniprot.org/proteomes





Keratin (human, sheep)

Cow Proteins
(Cell Culture Medium, BSA)

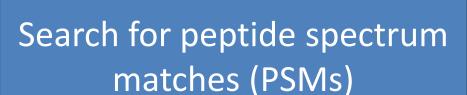
Trypsin (or Lys-C)

Amylase (Saliva) Rubber Proteins (gloves) Weight Markers Proteomics Standards Pepsin Caesein FLAG/HA Streptavidin

DIA-NN

Database Searching

Take all proteins from your species of interest



Shuffle Peptide Sequences

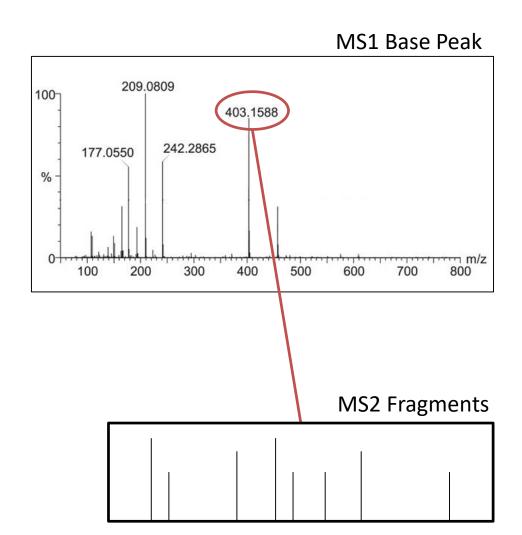
Generate Peptide Spectral Library

Generate Peptide Spectral Library

Protein Libraries

>P05067 Amyloid-beta precursor protein

MLPGLALLLAAWTARALEVPTDGNAGLLAEPQIAMFCGRLNMHMNVQNGKWDSDPSG
TKTCIDTKEGILQYCQEVYPELQITNVVEANQPVTIQNWCKRGRKQCKTHPHFVIPYR
CLVGEFVSDALLVPDKCKFLHQERMDVCETHLHWHTVAKETCSEKSTNLHDYGMLLPC
GIDKFRGVEFVCCPLAEESDNVDSADAEEDDSDVWWGGADTDYADGSEDKVVEVAEEE
EVAEVEEEEADDDEDDGDEVEEEAEEPYEEATERTTSIATTTTTTTESVEEVVREV
CSEQAETGPCRAMISRWYFDVTEGKCAPFFYGGCGGNRNNFDTEEYCMAVCGSAMSQS
LLKTTQEPLARDPVKLPTTAASTPDAVDKYLETPGDENEHAHFQKAKERLEAKHRERM
SQVMREWEEAERQAKNLPKADKKAVIQHFQEKVESLEQEAANERQQLVETHMARVEAM
LNDRRRLALENYITALQAVPPRPRHVFNMLKKYVRAEQKDRQHTLKHFEHVRMVDPKK
AAQIRSQVMTHLRVIYERMNQSLSLLYNVPAVAEEIQDEVDELLQKEQNYSDDVLANM
ISEPRISYGNDALMPSLTETKTTVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVE
PVDARPAADRGLTTRPGSGLTNIKTEEISEVKMDAEFRHDSGYEVHHQKLVFFAEDVG
SNKGAIIGLMVGGVVIATVIVITLVMLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQ
NGYENPTYKFFEQMQN


DECOY

>P05067 REV

NQMQEFFKYTPNEYGNQQMKSLHREEPTVAADVEVVGHHISTYQKKKLMVLTIVIVTA
IVVGGVMLGIIAGKNSGVDEAFFVLKQHHVEYGSDHRFEADMKVESIEETKINTLGSG
PRTTLGRDAAPRADVPEVENETNAPVSDAGFSHWPQLDDLSFEGNVPLLEVTTKTETL
SPMLADNGYSIRPESIMNALVDDSYNQEKQLLEDVEDQIEEAVAPVNYLLSLSQNMRE
YIVRLHTMVQSRIQAAKKPDVMRVHEFHKLTHQRDKQEARVYKKLMNFVHRPRPPVAQ
LATIYNELALRRRDNLMAEVRAMHTEVLQQRENAAEQELSEVKEQFHQIVAKKDAKPL
NKAQREAEEWERMVQSMRERHKAELREKAKQFHAHENEDGPTELYKDVADPTSAATTP
LKVPDRALPEQTTKLLSQSMASGCVAMCYEETDFNNRNGGCGGYFFPACKGETVDFYW
RSIMARCPGTEAQESCVERVVEEVSETTTTTTTAISTTRETAEEYPEEAEEEVEDGDE
DDEDDDAEEEEVEAVEEEEAVEVVKDESGDAYDTDAGGWWVDSDDEEADASDVNDSEE
ALPCCVFEVGRFKDIGCPLLMGYDHLNTSKESCTEKAVTHWHLHTECVDMREQHLFKC
KDPVLLADSVFEGVLCRYPIVFHPHTKCQKRGRKCWNQITVPQNAEVVNTIQLEPYVE
QCYQLIGEKTDICTKTGSPDSDWKGNQVNMHMNLRGCFMAIQPEALLGANGDTPVELA
RATWAALLLLALGPLM

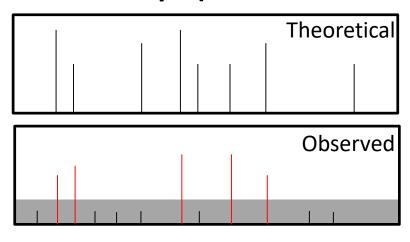
Decoy libraries can be reversed or shuffled

Peptide Spectrum Matches

Find peptides with masses close to the parent peak

>P05067

MLPGLALLLAAWTARALEVPTDGNAGLLAEPQIAMFCGRLNMHMNV QNGKWDSDP**SGTKTCIDTKEGIL**QYCQEVYPELQITNVVEANQPVTI QNWCKRGRKQCKTHPHFVIPYRCLVGEFVSDALLVPDKCKFLHQERM DVCETHLHW

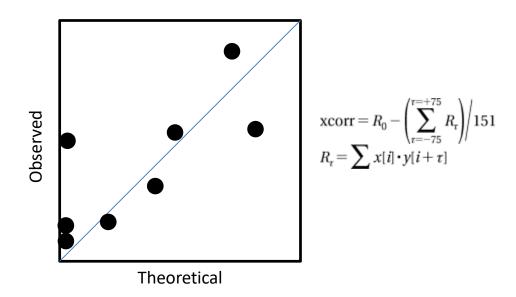

>P90210

MAVCGSAMSQSLLKTTQEPLARDPVKLPTTAASTPDAVDKYLETPGD ENEHAHFQKAKERLEAKHRERMSQVMREWEEAERQAKNLPKADKKAV IQHFQEKVESLEQEAANERQQLVET**HMARVEAMLNDRR**RLALENYIT ALQAVPPRPRHVFNMLKKYVRAEQKDRQHTLKHFEH

Hundreds of candidates

Scoring a PSM match

Count Overlaps (Andromeda - MQ)

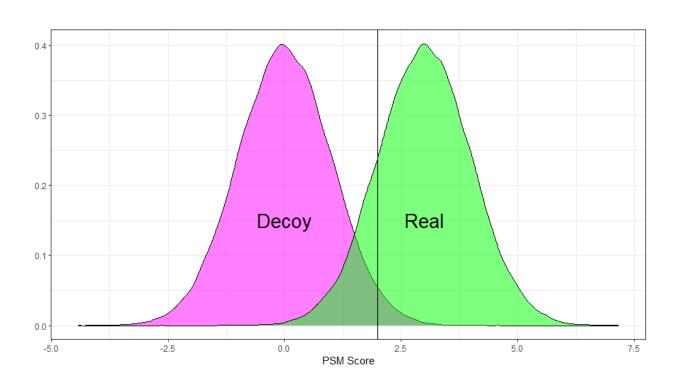

$$s(q, loss) = -10 \log_{10} \sum_{j=k}^{n} \left[\binom{n}{j} \left(\frac{q}{100} \right)^{j} \left(1 - \frac{q}{100} \right)^{n-j} \right]$$

$$s(q) = \max_{loss = transfellor} s(q, loss)$$

Probability of finding *n* matching peaks out of *k* theoretical peaks when taking the top *p* peaks in the spectrum

Correlate intensities (Perseus – PD)

Correlate intensities by mass for true masses and masses shifted +/- 75Da



Difference between the true correlation and the average mass shifted correlation

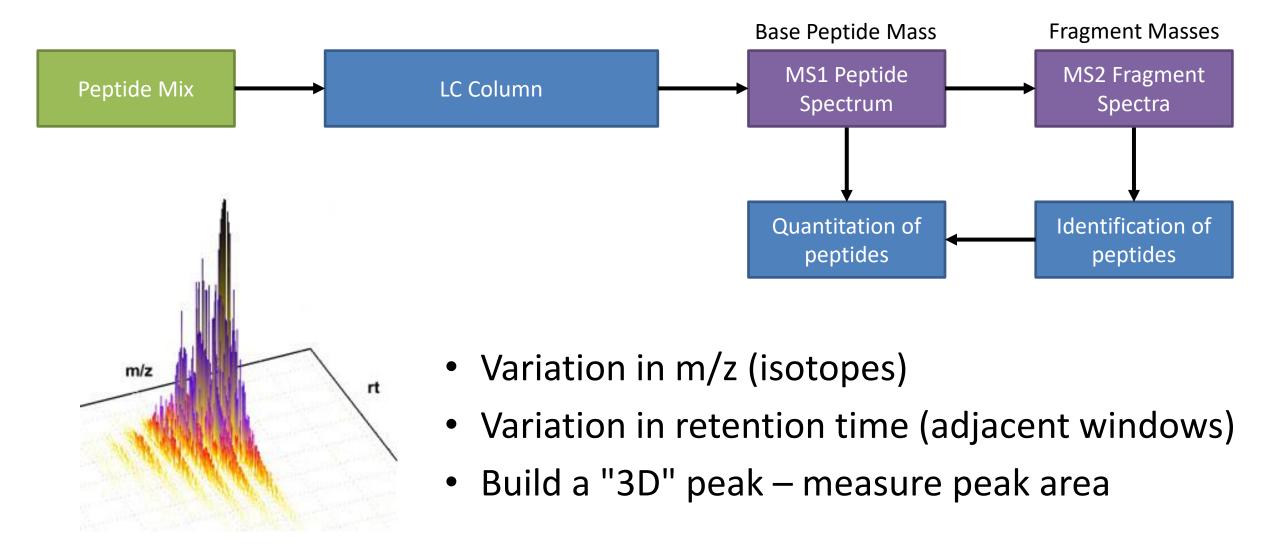
Estimating PSM confidence

Search against combined real + decoy database

Use the distribution of decoy hits to calculate a false discovery background

PEP Score

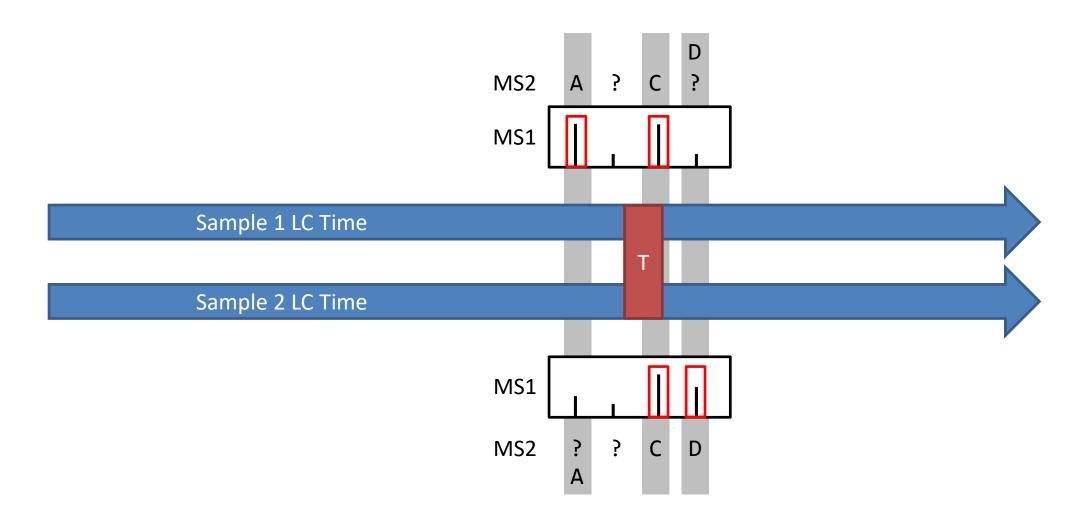
Probability of peptide being wrongly identified


Q-value

Ratio of best Real hit to best Decoy hit

Quantitating Proteins

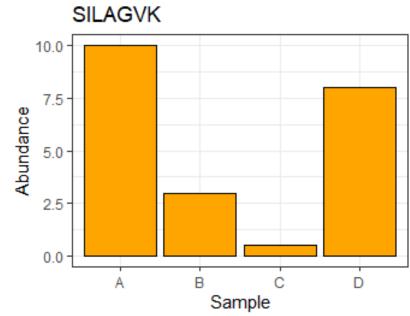
Label Free Quantitation



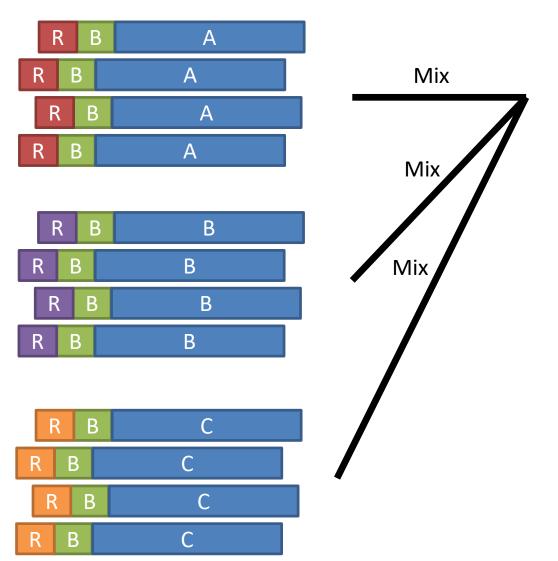
Measuring multiple samples

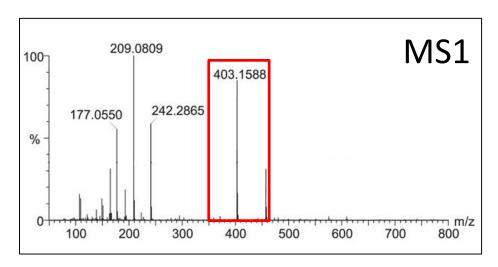
- Variability in LC performance / time
- DDA selects different peaks
- Different peptides identified
- Missing values

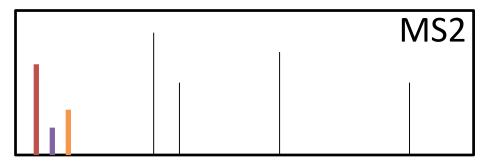
How to measure consistently across samples?


Finding missing label free MS2 peaks

Matching MS1 base peaks based on LC time and M/Z allows more consistent data collection.

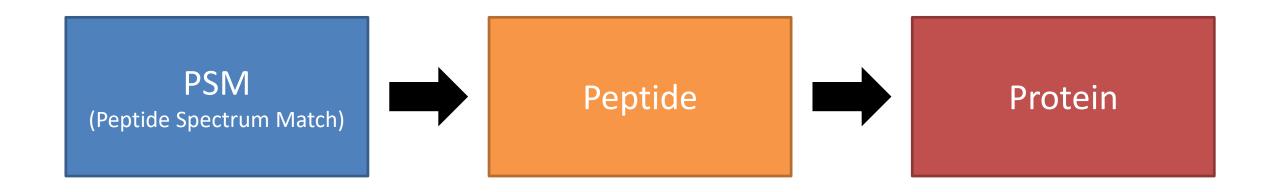

Tandem Mass Tagging (TMT)


Multiple tags with different reporter masses Normalisers ensure total tag masses are identical


DOI:10.1155/2014/767812

Tandem Mass Tagging

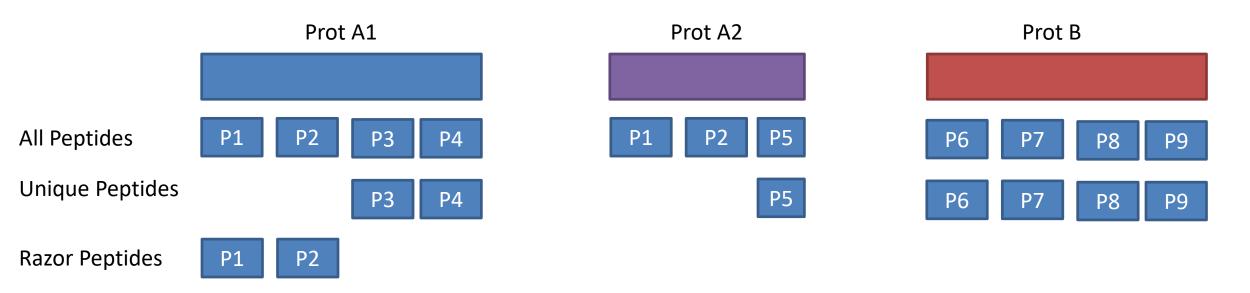
Peptides from all samples run together with a fixed mass shift


Reporters detach leaving a separately quantifiable signal

>15 reporters available

Moving from peptides to proteins

Levels of quantitation


Data Volume

PSMs to Peptides

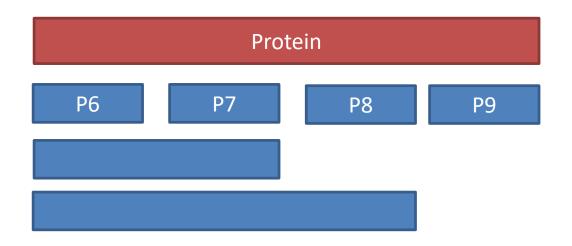
- One peptide can produce multiple PSMs
 - Different charge states
 - Different modifications
 - Missed cleavage sites

- Combine the intensities for all PSMs for the same peptide
 - Mean
 - Trimmed mean
 - Sum

Peptides to Proteins

Assigning Razor Peptides

- Protein with most unique evidence
- Protein with highest molecular weight


Quantitative value assignment

- Mean of peptide quantitation
- Sum of peptide quantitation
- Highest peptide quantitation

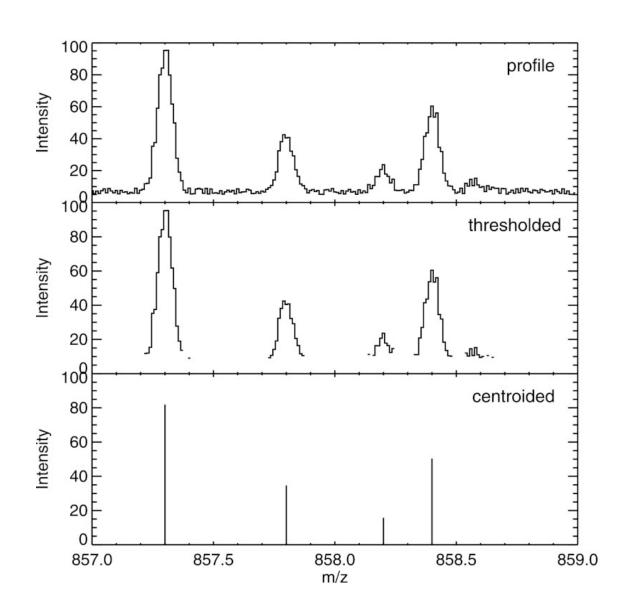
Grouping Proteins

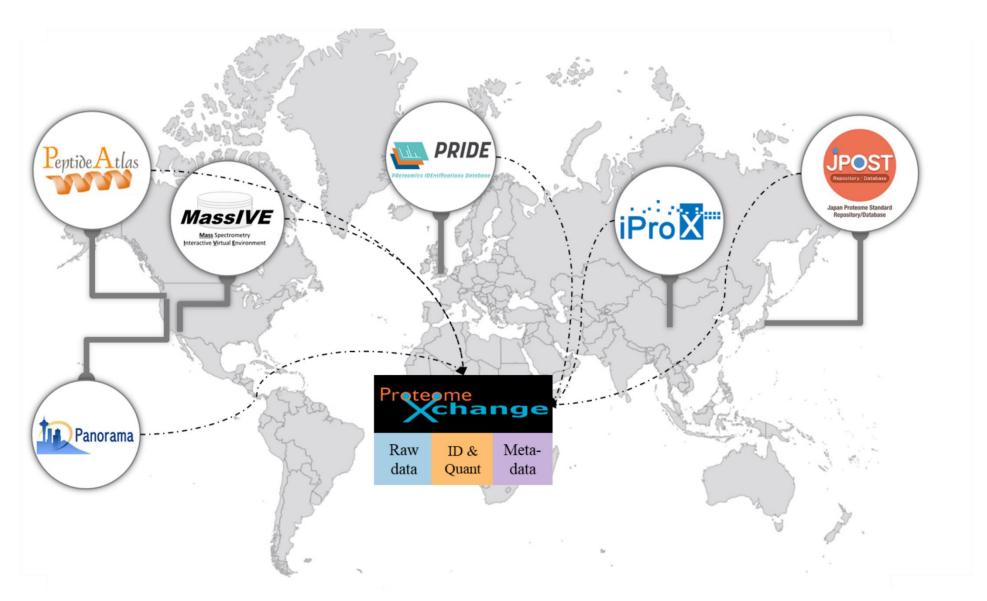
- Multiple proteins which share the same peptides are grouped together
- Different groups can share peptides (Razor Peptides)

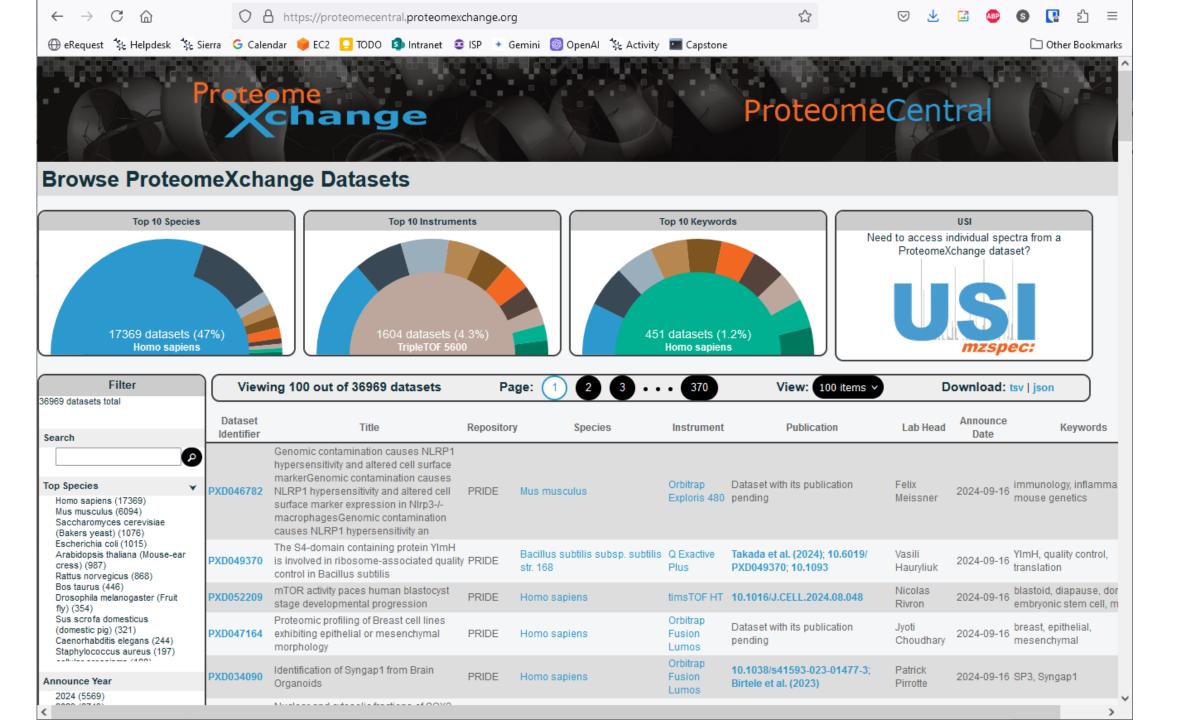
Reported Values

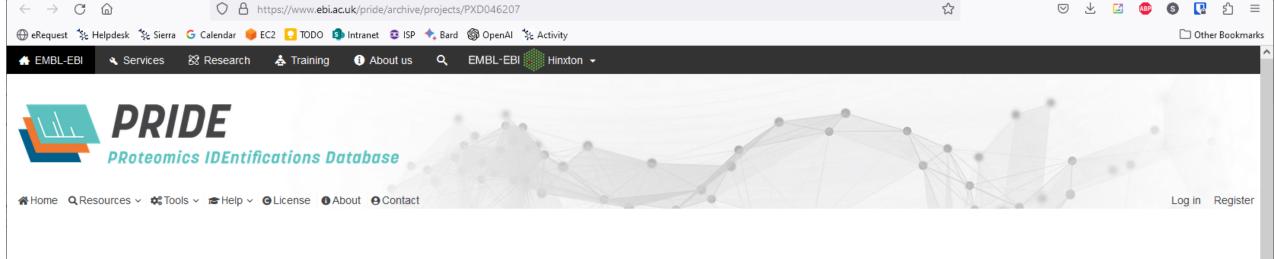
- How many peptides were observed (unique or with razor)
- What percentage of peptides were observed (coverage)
- Missed Cleavages

Proteomics Data Files


Instrument Provider	Extension	File type
Agilent	.D	instrument data format
Bruker	.BAF	instrument data format
Bruker	.FID	instrument data format
Bruker	.YEP	instrument data format
ABI/Sciex	.WIFF	QSTAR and QTRAP file format
ABI/Sciex	.t2d	4700 and 4800 file format
Thermo Xcalibur, Micromass (Waters), PerkinElmer, Waters	.RAW	Thermo Xcalibur, Micromass (Waters) MassLynx, PerkinElmer TurboMass
Shimadzu	.QGD	GCMSSolution format
Chromtech, Finnigan, VG	.DAT	Finnigan ITDS file format, MassLab data format
Finnigan (Thermo)	.MS	ITS40 instrument data format
Shimadzu	.qgd	instrument data format
Shimadzu	.spc	library data format
Bruker/Varian	.SMS	instrument data format
Bruker/Varian	.XMS	instrument data format
ION-TOF	.itm	raw measurement data
ION-TOF	.ita	analysis data
Physical Electronics/ULVAC-PHI	.raw	raw measurement data
Physical Electronics/ULVAC-PHI	.tdc	spectrum data


Most common format (>70% of PRIDE)


Information in RAW files


- Chromatography times
- Instrument settings
- Spectra (with details)
 - MS1
 - MS2

Data Repositories for Proteomics Mass Spec

Project PXD046207

Summary Title TMT-based proteomics analysis of optic nerve lysates from oligodendrocyte-specific Kir4.1 knockout mice Description To study the role oligodendroglial Kir4.1 in regulating axonal energy metabolism, oligodendrocyte-specific Kir4.1 knockout mice and their littermate controls were used; optic nerve lysates were prepared for subsequent TMT-based proteomics. Sample Processing Protocol The TMT-based quantitative proteomics was conducted by the Functional Genomics Center Zurich (FGCZ). Protein concentrations were determined

using the Lunatic UV/Vis polychromatic spectrophotometer (Unchained Labs). Samples were processed using a commercial iST Kit (PreOmics, Germany). Samples were mixed with 'Lyse' buffer, boiled at 95°C for 10 minutes, transferred to the cartridge and digested by...

Read more

Data Processing Protocol

The acquired raw MS data were processed by Proteome Discoverer (PD version 2.4), followed by protein identification using the integrated Sequest HT search engine. Spectra were searched against the mus musculus reference proteome (downloaded from UniProt, 20190709), concatenated with common protein contaminants. Carbamidomethylation (C), TMT (+229.163Da; peptide N-term and K) were set as fixed modi...

Read more

Contact

Professor Aiman Saab, University of Zurich, Institute of Pharmacology & Toxicology

Organism part Optic nerve Diseases Unknown

Modification

Properties

Organism

Mus musculus (mouse)

TMT6plex-126 reporter+balance reagent acylated residue acetylated residue

iodoacetamide derivatized residue

Instrument

Orbitrap Fusion Lumos

Software

Unknown

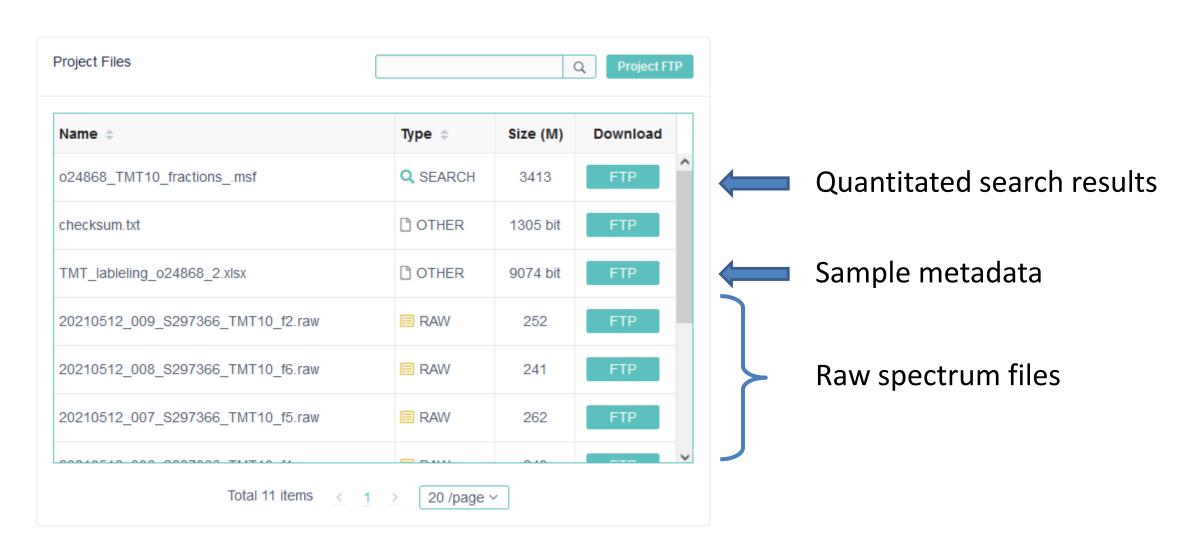
Experiment Type

Bottom-up proteomics

Quantification

Problems with public data

Things that are well recorded


- Mass spec collection metrics
- Organism
- Modifications
- (Search method)

Things that are NOT recorded

- Sample details
- Experimental Conditions
- Link from RAW files to samples

Finding data is simple. Downloading RAW files is easy. Figuring out which sample is which can be a complete nightmare.

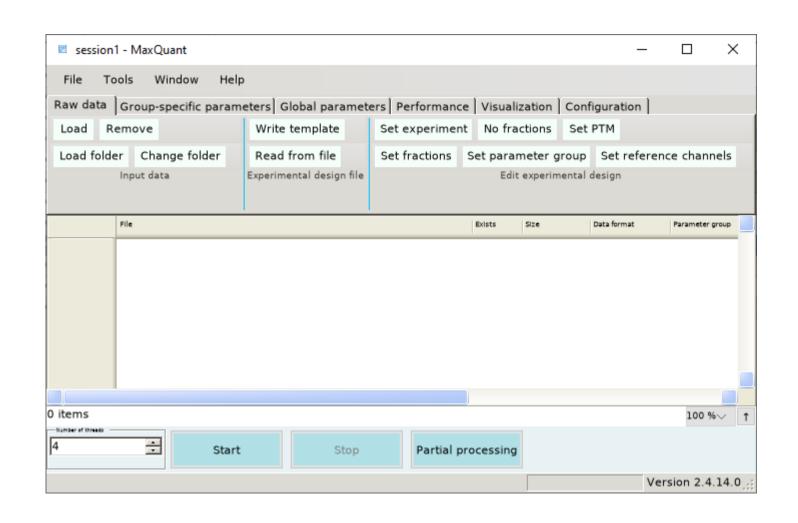
Files to download

Exercise

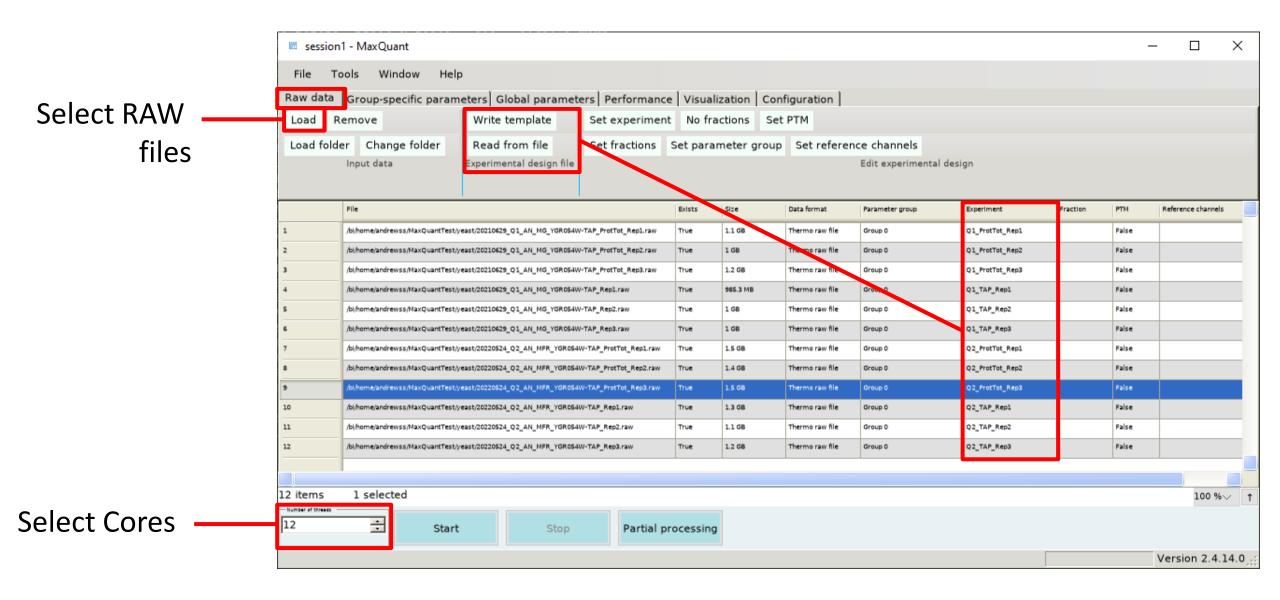
Finding Data in Public Repositories

Running a Database Search

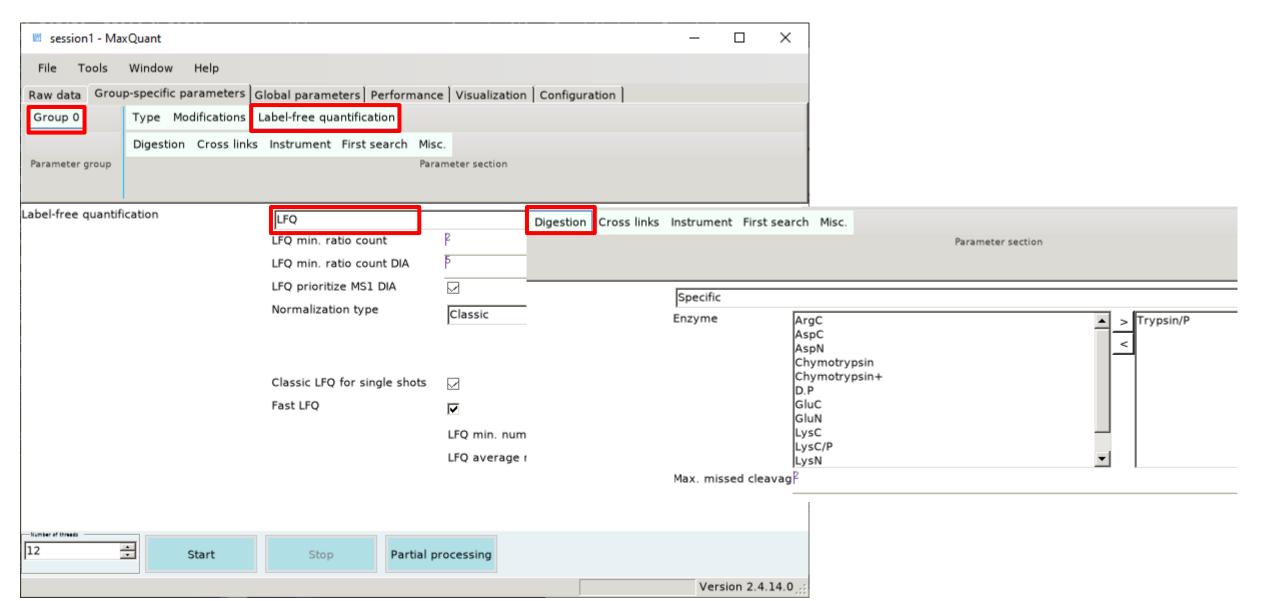
Main Information Required


- Which RAW file(s) are you analysing?
- Which sequences do you want to search against?
- Which type of quantitation are you using?
- How did you digest your peptides?
- What modifications do you expect to be present?
- Specific thresholds
 - Mass accuracy
 - LC time flexibility
 - Statistical thresholds

Normally either left at defaults, or set based on the machine you're using


Running MaxQuant (Label Free)

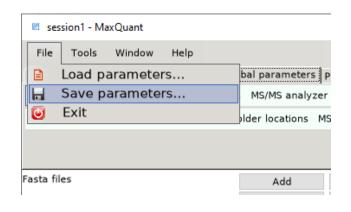
- Set Data
- Set Cores
- Set Search Sequences
- Set Quantitation
- Save Parameters


Run search

Load Raw Files

Set Quantitation

Identification Parameters


Orbitrap	
First search peptide tolerance	20
Main search peptide tolerance	4.5
Peptide tolerance unit	ppm
Individual peptide mass tolerance	
Isotope match tolerance	2
Isotope match tolerance unit	ppm
Centroid match tolerance	8
Centroid match tolerance unit	ppm
Centroid half width	35
Centroid half width unit	ppm
Time valley factor	1.4
Isotope valley factor	1.2
Isotope time correlation	0.6
Theoretical isotope correlation	0.6
Recalibration unit	ppm
Use MS1 centroids	
Use MS2 centroids	
Intensity dependent calibration	
Min. peak length	2
Min. DIA peak length	1
Max. charge	7
Min score for recalibration	70
Cut peaks	\Box
Gap scans	1

Raw data Group-specific parameters	Global parameters Performance Visualization Configuration
Sequences Protein quantification Table	
Identification Label free quantification	Folder locations MS/MS fragmentation
	Parameter section
PSM FDR	p.01
Protein FDR	p.01
Site decoy fraction	p.01
Min. peptides	ļ
Min. razor + unique peptides	ļ.
Min. unique peptides	r
Min. score for unmodified peptides	p
Min. score for modified peptides	40
Min. delta score for unmodified peptides	p
Min. delta score for modified peptides	6
Main search max. combinations	200
Base FDR calculations on delta score	
Razor protein FDR	
Split protein groups by taxonomy ID	
PSM FDR Crosslink	p.01
Second peptides	Ø
Match between runs	V
	Match time window [min] D · 4
	Match ion mobility windov 0.05
	Alignment time window [r ²⁰
	Alignment ion mobility wil ¹
	Match unidentified featur€

Search Sequences

Raw data Group-specific parameters Glo	bal paramet	ters Performance	Visualization Configura	ation						
Sequences Protein quantification Tables MS/MS analyzer Advanced										
Identification Label free quantification Folder locations MS/MS fragmentation										
Parameter section Parameter section										
Fasta files	Add	Remove	Change folder Identif	ier rule	Description rule Ta	axonomy rule Tax	conomy ID			
	Variation r	ule Test								
		Fasta file path		Exists	Identifier rule	Description rule	Taxonomy rule	Taxonomy ID	Organism	
	1 /bl/home/andrewss/MaxQuantTest/genomes/UP000002311_559292.fa			True	γ(*,)γ*.<	>(*,)<		559292	Saccharomyces cerevis	
		2 - de de d								
	2 items ☑	1 selected							100 %	1
Min. peptide length	7									
	4600									
	В									
Max. peptide length for unspecific search	25									
Variation mode	None									—
Variation mode	None									•

Saving and Running


```
$ ls -l mqpar.xml
-rw-rw-r-- 1 andrewss bioinf 29631 Aug 20 10:09 mqpar.xml
```

maxquant_cmd mqpar.xml

ssub -o mqcmd.log --cores=12 --mem=20G maxquant_cmd mqpar.xml

Easier searches with mqtemplate

mqtemplate --template lfq --proteome mouse *raw

```
Proteome file is /bi/apps/mqtemplate/latest/proteomes/mouse_UP000000589_2024_08_23.fa
Template file is /bi/apps/mqtemplate/latest/templates/lfq.xml
Writing mqpar to /bi/home/andrewss/MaxQuantTest/example/mqpar.xml
```

Command to start searching:

```
ssub -o mqcmd.log --cores=12 --mem=24G maxquant_cmd mqpar.xml
```

Log File Whilst Running

Configuring
Assemble run info
Finish run info
Testing fasta files
Testing raw files

Feature detection
Deisotoping
MS/MS preparation
Calculating peak properties
Combining apl files for first search
Preparing searches
MS/MS first search

Read search results for recalibration
Mass recalibration
Calculating masses
MS/MS preparation for main search
Combining apl files for main search

MS/MS main search
Preparing combined folder
Correcting errors
Reading search engine results
Preparing reverse hits
Finish search engine results
Filter identifications (MS/MS)
Calculating PEP
Copying identifications
Applying FDR

Assembling second peptide MS/MS
Combining second peptide files
Second peptide search
Reading search engine results (SP)
Finish search engine results (SP)
Filtering identifications (SP)
Applying FDR (SP)
Re-quantification
Reporter quantification

Retention time alignment
Matching between runs 1
Matching between runs 2
Matching between runs 3
Matching between runs 4

Prepare protein assembly
Assembling proteins
Assembling unidentified peptides
Finish protein assembly
Updating identifications

Label-free preparation
Label-free normalization
Label-free quantification
Label-free collect
Estimating complexity
Prepare writing tables
Writing tables
Finish writing tables

Output Files

RAW files

combined

txt

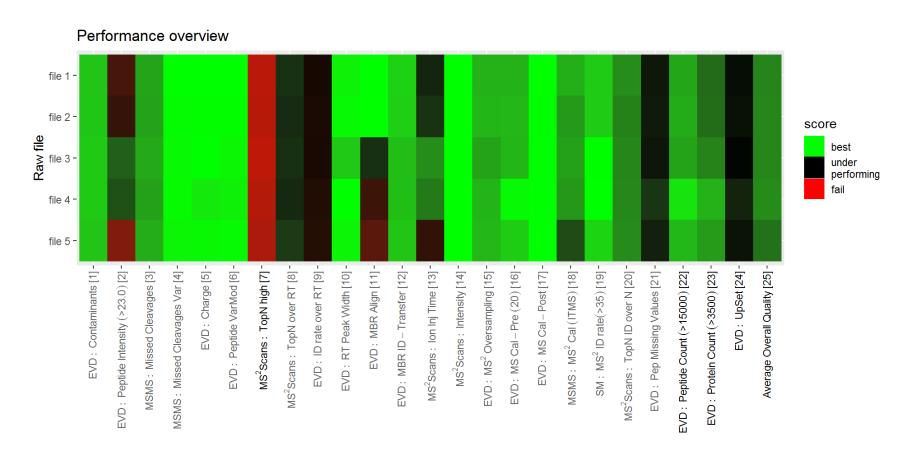
evidence.txt

All of the quantified data at PSM level

summary.txt

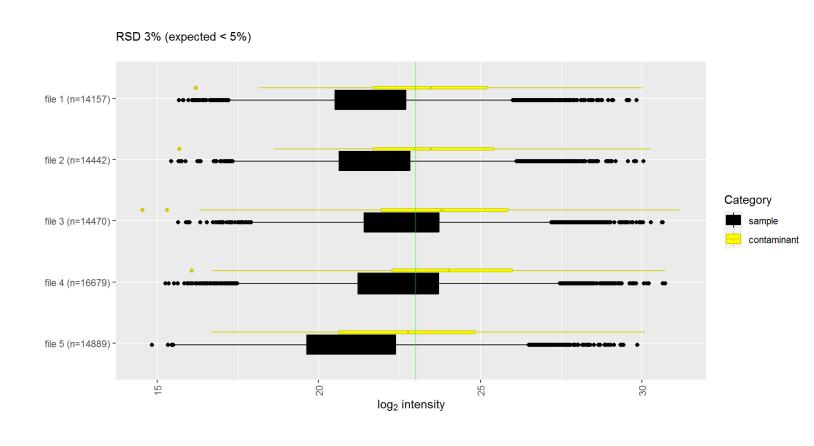
Overall summary metrics for the run

proteinGroups.txt


Details of the proteins which were joined

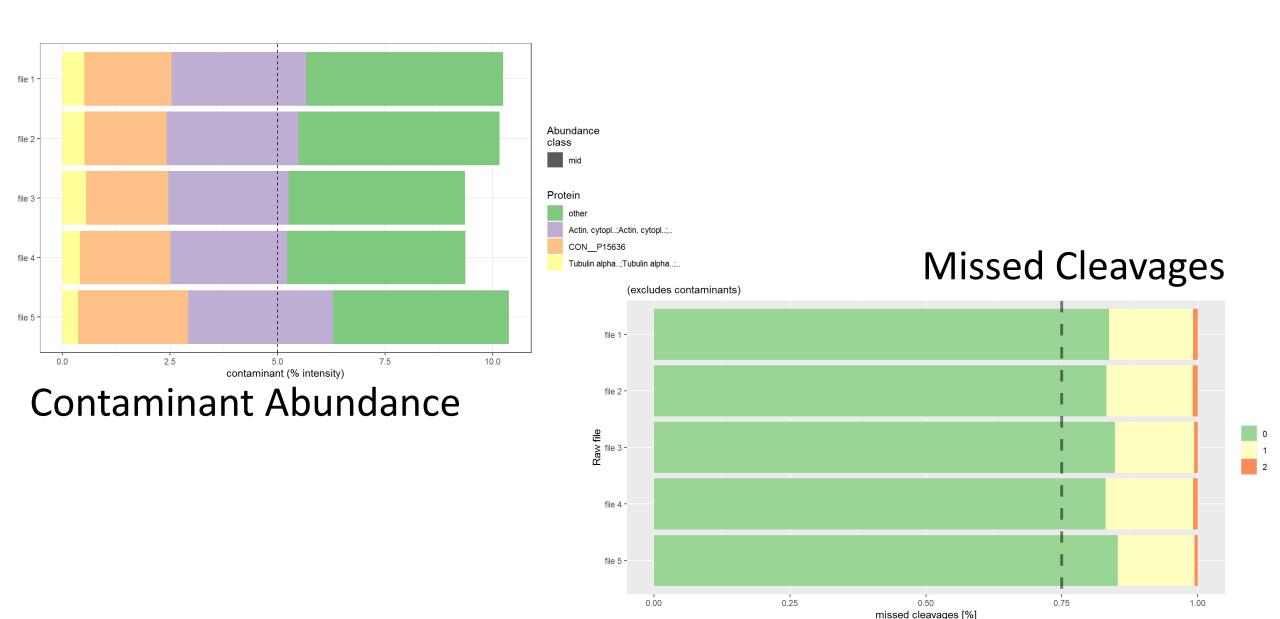

Quality Control of Search Results

- 1. Problems during sample preparation
 - Digestion failed
 - Sample Contaminated
 - Low sample amount
- 2. Problems during Chromatography
 - Even amounts of data over time
 - Consistent rate between experiments
- 3. Problems with the Mass Spec
 - Poor mass accuracy
 - Poor matching to reference

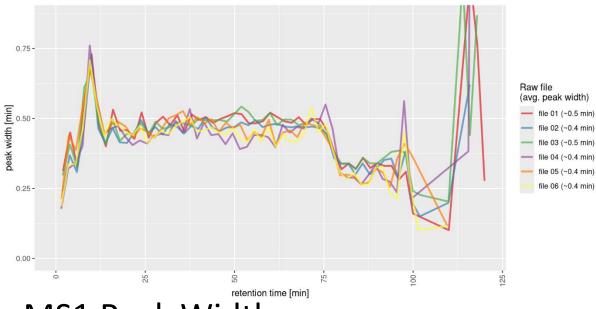

PTXQC

R package – calculates a QC report from MQ or MzTab

Loading and Abundance

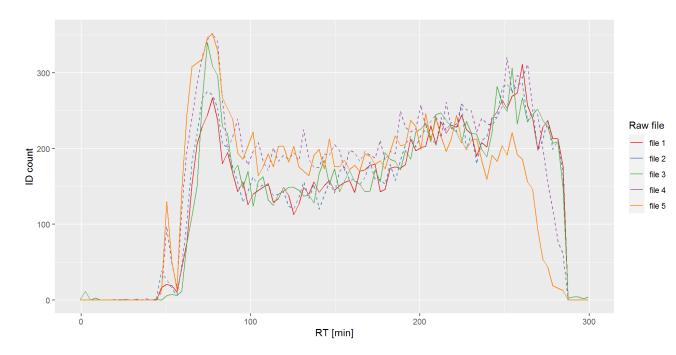


Should be equal (ish)

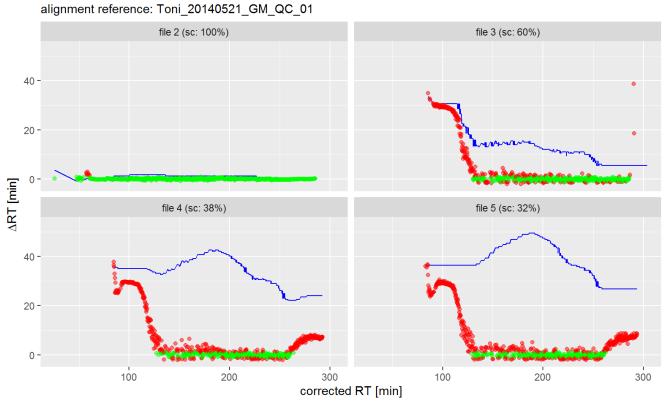

- Lower is worse
 - Underloaded
 - Poor column

 RSD is reproducibility between files

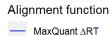
Digestion and Contaminants



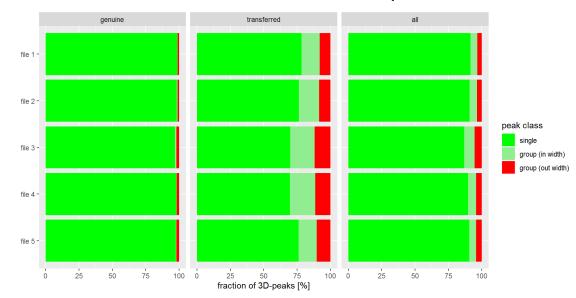
Chromatography Consistency



MS1 Peak Width

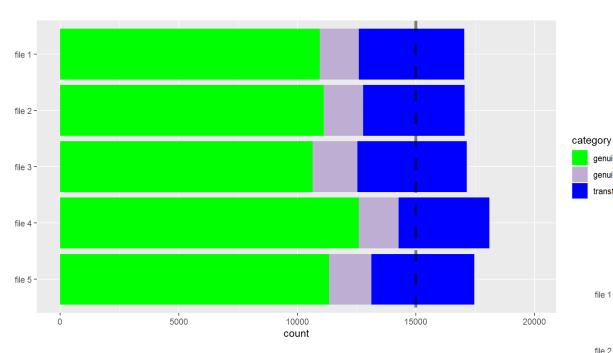

Consistent peptides over time

Match Between Runs


Were the retention times sufficiently close to allow base peak matching?

ID pairs (△RT to Ref)

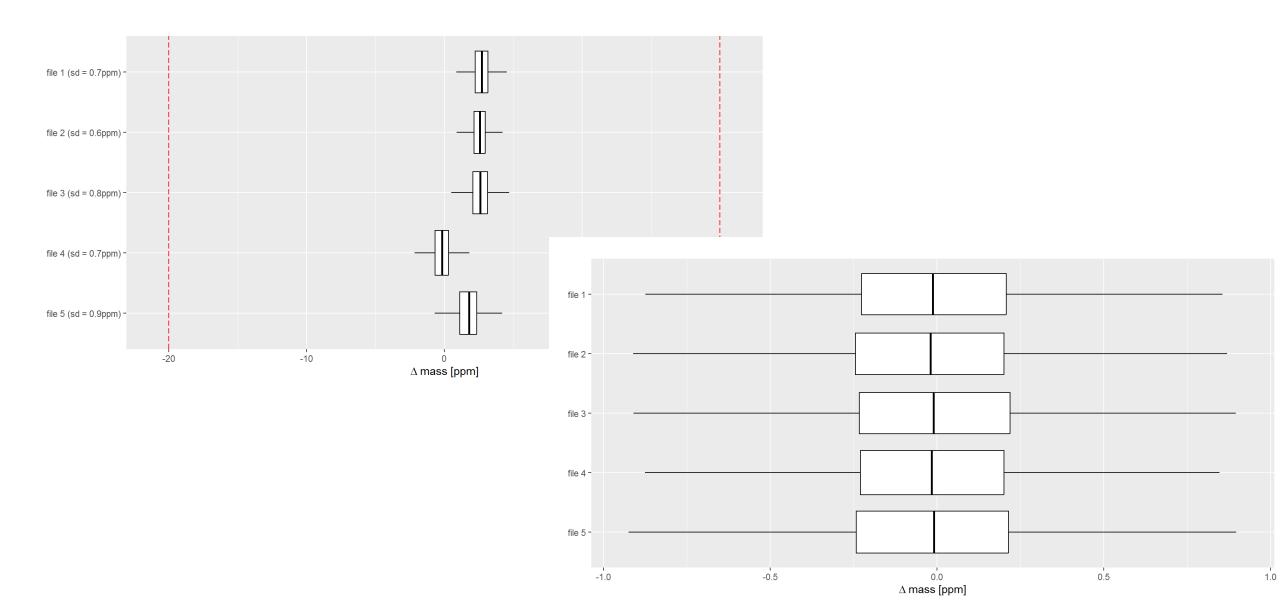
good (<1min)bad (>1min)


Were transferred peaks correct?

Peptide Identification

genuine (exclusive)

genuine + transferred transferred (exclusive)



Peptide Level

Protein Level

Mass Accuracy

Exercise

Looking at QC Reports

Analysing Mass Spec Data with R

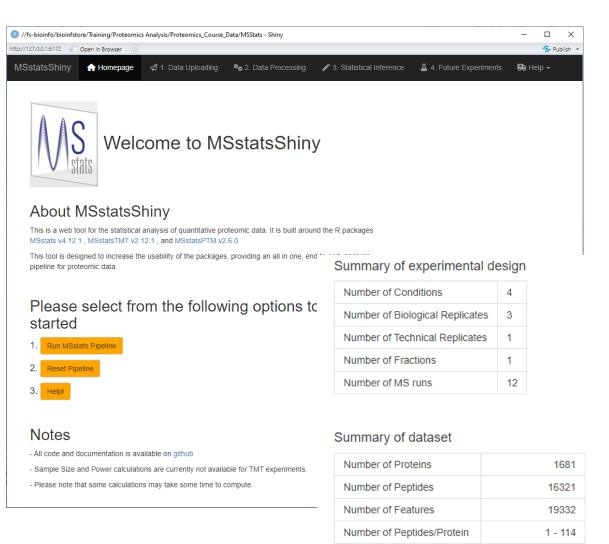
Bioconductor Package Environments

Home > Bioconductor 3.19 > Software Packages > MSstats

MSstats

Protein Significance Analysis in DDA, SRM and DIA for Label-free or Label-based Proteomics Experiments

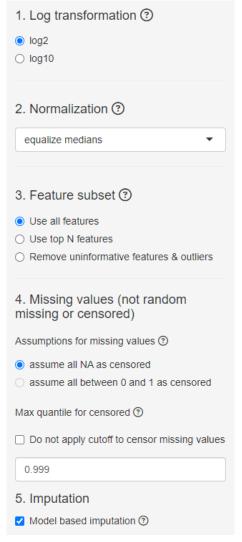
- Streamlined workflow
 - Data Import
 - Data Aggregation and Normalisation
 - Differential abundance testing
- Little flexibility or control

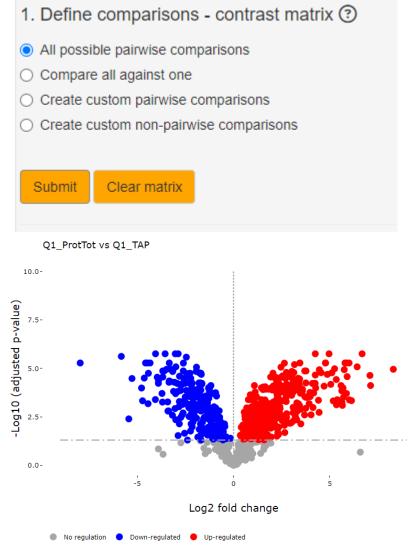

Home > Bioconductor 3.19 > Software Packages > QFeatures

QFeatures

Quantitative features for mass spectrometry data

- Manual workflow
 - More user input in each step
 - More flexibility and options
 - Links externally for statistics


MSStats Shiny



Number of Features/Peptide

Intensity Range

197170 - 1.65e+10

MSStats Shiny Workflow

- Define Experiment
 - Protein vs Peptide vs PTM
 - Mass Spec experiment type

Biological Question ②
 Protein
 Peptide
 PTM
 Label Type ②
 Label-Free
 TMT

- Load Data
 - Different imports from different programs

3. Type of File ②

Example dataset

MSstats Format

Skyline

MaxQuant

Progenesis

Proteome Discoverer

OpenMS

Spectronaut

OpenSWATH

DIA-Umpire

SpectroMine

FragPipe

O DIANN

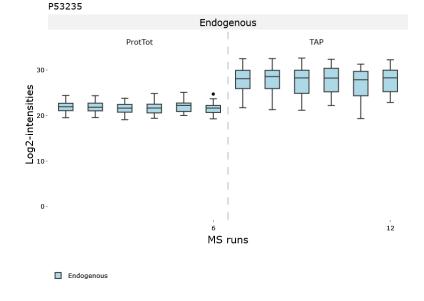
MSStats Shiny Workflow

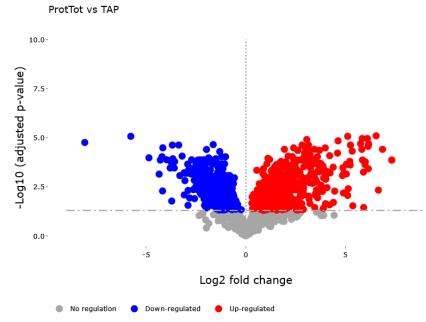
- Protein Level Summarisation
 - Log Base
 - Normalisation
 - Filtering
 - Imputation
 - Summarisation

- Visualisation of individual proteins
 - Not very useful initially

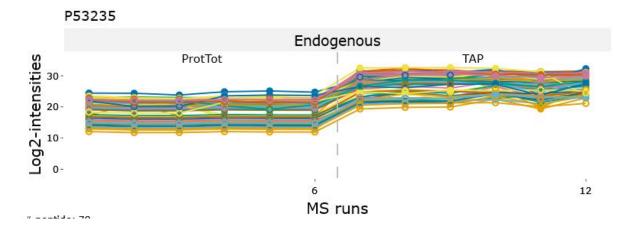
MSStats Shiny Workflow

- Statistical analysis
 - Define comparison


Results


There are 1255 significant proteins

Sho	Show 10 v entries										
	Protein	Label	log2FC 🛊	SE 崇	Tvalue 🖣	DF ∳	pvalue 🏺	adj.pvalue 💠	issue	MissingPercentage 👇	ImputationPercentage 👇
1	D6VTK4	ProtTot vs TAP						0	oneConditionMissing		
3	O13563	ProtTot vs TAP	2.431262729897645	0.1894762946740944	12.83148762265749	4	0.0002126472933023926	0.000921388645803319		0.1666666666666666	0.083333333333333333
4	O14455	ProtTot vs TAP	-1.273480014622274	0.3696235638608044	-3.445343152153174	5	0.01832942156221806	0.02899883654539024		0.33333333333333333	0.3333333333333333
5	O14467	ProtTot vs TAP	1.244717336950288	0.1458327291484536	8.53523995757633	5	0.0003633988273616939	0.00136166833335528		0.25	0.25


MSStats Shiny Workflow

- Visualisation
 - Volcano plot
 - Expression plots


Data Export

Exercise

Running MSstats Shiny

MStats Manual

Loading Data

- MaxQuant
 - evidence.txt
 - proteinGroups.txt
- Spectronaut
 - output_spectronaut.csv

- ProteomeDiscoverer
 - PSM result file

Raw PSM Data

Sequence [‡]	Length [‡]	Missed.cleavages [‡]	Proteins [‡]	Gene.names [‡]	Raw.file	Charge [‡]	Mass.errorppm.	Max.intensity.m.z.0	Retention.time	Retention.length	PEP [‡]	Score [‡]
AAAALAGGK	9	0	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1	2	-0.244510	365.2162	8.7458	0.45706	0.0042477	94.262
AAAALAGGK	9	0	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2	2	0.038681	365.2162	8.7372	0.39832	0.0042477	94.262
AAAALAGGK	9	0	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3	2	0.116350	365.2163	8.7182	0.49986	0.0016151	107.430
AAAALAGGK	9	0	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_Rep2	2	0.088304	365.2163	8.7135	0.41269	0.0042477	94.262
AAAALAGGK	9	0	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_Rep3	2	0.438690	365.2164	9.0948	0.83755	0.0042477	94.262
AAAALAGGKK	10	1	Q3E792;P0C0T4	RPS25A;RPS25B	20210629_Q1_AN_MG_YGR054W-TAP_Rep3	2	0.152100	429.2639	6.7033	0.15213	0.0032101	89.142
AAAALAGGKK	10	1	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3	2	-0.342160	429.2637	6.8329	0.11095	0.0143460	74.255
AAAALAGGKK	10	1	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_Rep1	2	0.166710	429.2639	7.0810	0.29224	0.0040289	84.568
AAAALAGGKK	10	1	Q3E792;P0C0T4	RPS25A;RPS25B	20220524_Q2_AN_MFR_YGR054W-TAP_Rep2	2	0.026834	429.2638	6.8247	0.33290	0.0153460	73.260

Building Annotation File

Raw.file	Condition [‡]	BioReplicate [‡]	IsotypeLabelType
20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1	ProtTot	1	L
20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2	ProtTot	2	L
20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3	ProtTot	3	L
20210629_Q1_AN_MG_YGR054W-TAP_Rep1	TAP	1	L
20210629_Q1_AN_MG_YGR054W-TAP_Rep2	TAP	2	L
20210629_Q1_AN_MG_YGR054W-TAP_Rep3	TAP	3	L
20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1	ProtTot	4	L
20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2	ProtTot	5	L
20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3	ProtTot	6	L
20220524_Q2_AN_MFR_YGR054W-TAP_Rep1	TAP	4	L
20220524_Q2_AN_MFR_YGR054W-TAP_Rep2	TAP	5	L
20220524_Q2_AN_MFR_YGR054W-TAP_Rep3	TAP	6	L

Creating raw data object

```
MaxQtoMSstatsFormat(
   evidence = evidence,
   annotation = annotation,
   proteinGroups = protein_groups
) -> raw_data
```

- Removes contaminants
- Removes reverse (decoy) matches
- Removes proteins with 1 or 2 measures across all samples

ProteinName **	PeptideSequence	PrecursorCharge	Fragmention	ProductCharge	IsotopeLabelType	Condition	BioReplicate	Run	Fraction	Intensity
P38625	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	3	NA	NA	L	ProtTot	1	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1	1	10161000
P38625	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	3	NA	NA	L	ProtTot	2	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2	1	10229000
P38625	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	3	NA	NA	L	ProtTot	3	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3	1	10218000
P38625	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	3	NA	NA	L	TAP	1	20210629_Q1_AN_MG_YGR054W-TAP_Rep1	1	NA
P38625	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	3	NA	NA	L	TAP	2	20210629_Q1_AN_MG_YGR054W-TAP_Rep2	1	NA
P38625	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	3	NA	NA	L	TAP	3	20210629_Q1_AN_MG_YGR054W-TAP_Rep3	1	NA

Quantitating

```
dataProcess(
   raw_data
) -> quantified_data
```

- Log transforms and Normalises
- Summarises Proteins
- Imputes missing values

PEPTIDE	TRANSITION [‡]	LABEL [‡]	GROUP [‡]	RUN [‡]	SUBJECT [‡]	FRACTION [‡]	originalRUN \$	censored [‡]	INTENSITY [‡]	ABUNDANCE [‡]	newABUNDANCE [‡]	predicted [‡]
(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	NA_NA	L	ProtTot	1	1	1	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1	FALSE	10161000	23.05338	23.05338	NA
(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	NA_NA	L	ProtTot	2	2	1	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2	FALSE	10229000	23.60723	23.60723	NA
$(Acetyl\ (Protein\ N-term)) AAGEQVSNM (Oxidation\ (M)) FDTILV$	NA_NA	L	ProtTot	3	3	1	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3	FALSE	10218000	22.65629	22.65629	NA
(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	NA_NA	L	ProtTot	4	4	1	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1	FALSE	20127000	22.42500	22.42500	NA
(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	NA_NA	L	ProtTot	5	5	1	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2	FALSE	20789000	23.20497	23.20497	NA
(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	NA_NA	L	ProtTot	6	6	1	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3	FALSE	13235000	22.04327	22.04327	NA
(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	NA_NA	L	TAP	7	1	1	20210629_Q1_AN_MG_YGR054W-TAP_Rep1	TRUE	NA	NA	18.11484	18.11484
(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	NA_NA	L	TAP	8	2	1	20210629_Q1_AN_MG_YGR054W-TAP_Rep2	TRUE	NA	NA	19.12241	19.12241
	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV	PEPTIDE (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1 20210629_Q1_AN_MG_YGR054W-TAP_Rep1	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 FALSE (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 FALSE (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 <td>(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 FALSE 10161000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 FALSE 10229000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 10218000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1 FALSE 20127000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE 20789000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 20210629_Q1_AN_MG_YGR054W-TAP_Rep1 TRUE NA_NA</td> <td>(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 FALSE 10161000 23.05338 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 FALSE 10229000 23.60723 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 3 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 10218000 22.65629 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 20127000 22.42500 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE 20789000 23.20497 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 TAP_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_</td> <td>(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 FALSE 10161000 23.05338 23.05338 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 FALSE 10229000 23.60723 23.60723 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 3 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 10218000 22.65629 22.65629 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1 FALSE 20127000 22.42500 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE 20789000 23.20497 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1 20210629_Q1_AN_MG_YGR054W-TAP_Rep1 TRUE NA NA 18.11484</td>	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 FALSE 10161000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 FALSE 10229000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 10218000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1 FALSE 20127000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE 20789000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 20210629_Q1_AN_MG_YGR054W-TAP_Rep1 TRUE NA_NA	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 FALSE 10161000 23.05338 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 FALSE 10229000 23.60723 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 3 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 10218000 22.65629 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 20127000 22.42500 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE 20789000 23.20497 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 TAP_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_NA_	(Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 1 1 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1 FALSE 10161000 23.05338 23.05338 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 2 2 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2 FALSE 10229000 23.60723 23.60723 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 3 3 3 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 10218000 22.65629 22.65629 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 4 4 4 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1 FALSE 20127000 22.42500 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 5 5 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep2 FALSE 20789000 23.20497 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L ProtTot 6 6 6 1 20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1 20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3 FALSE 13235000 22.04327 (Acetyl (Protein N-term))AAGEQVSNM(Oxidation (M))FDTILV NA_NA L TAP 7 1 1 20210629_Q1_AN_MG_YGR054W-TAP_Rep1 TRUE NA NA 18.11484

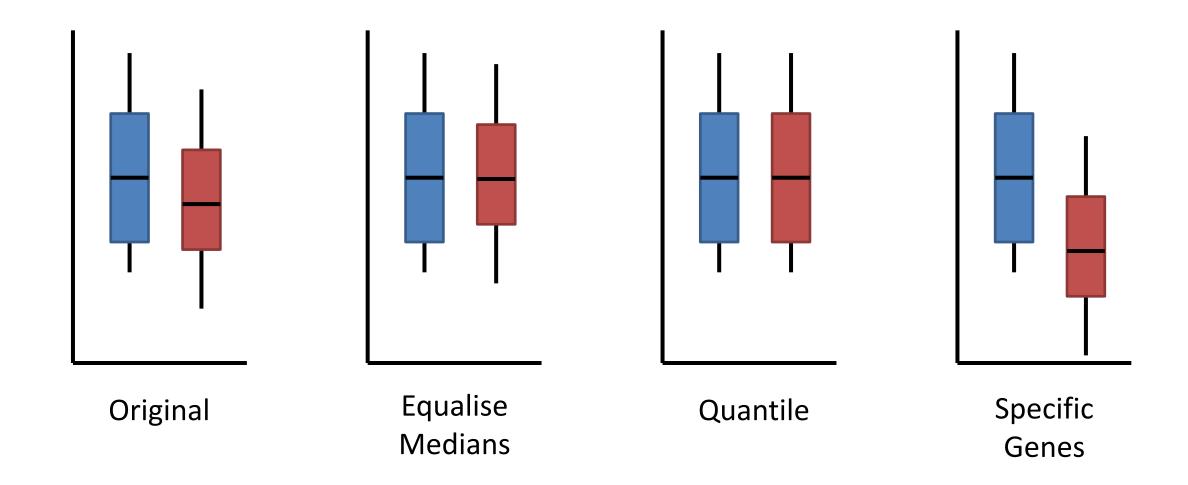
RUN	Protein	LogIntensities	originalRUN	GROUP	SUBJECT	TotalGroupMeasurements	NumMeasuredFeature	MissingPercentage	more50missing	NumImputedFeature **
1	D6VTK4	21.39583	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep1	ProtTot	1	6	1	0.0	FALSE	0
2	D6VTK4	21.05305	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep2	ProtTot	2	6	1	0.0	FALSE	0
3	D6VTK4	21.13670	20210629_Q1_AN_MG_YGR054W-TAP_ProtTot_Rep3	ProtTot	3	6	1	0.0	FALSE	0
4	D6VTK4	20.88367	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1	ProtTot	4	6	1	0.0	FALSE	0
6	D6VTK4	20.91406	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep3	ProtTot	6	6	1	0.0	FALSE	0
4	O13516	21.54172	20220524_Q2_AN_MFR_YGR054W-TAP_ProtTot_Rep1	ProtTot	4	12	1	0.5	TRUE	1

Imputation

- Can greatly expand the coverage of your data
- Restored values based on assumptions which may not be true
- Statistics doesn't account for what is imputed

scientific reports

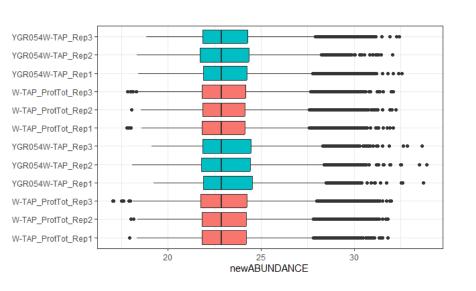
OPEN

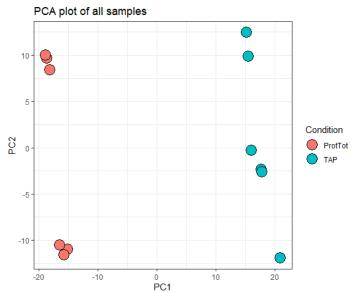

A comparative study of evaluating missing value imputation methods in label-free proteomics

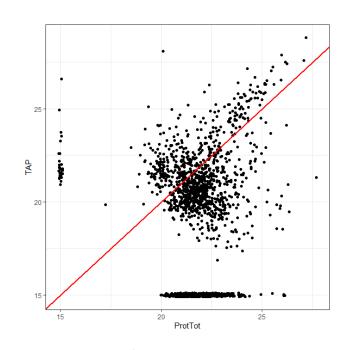
Liang Jin¹, Yingtao Bi², Chenqi Hu¹, Jun Qu³,⁴, Shichen Shen³,⁴, Xue Wang¹ & Yu Tian¹™

Many Methods

- Lowest observed value
- Random normal value
- Nearest neighbours
- Random forest


Normalisation




Exploration

- Important to visually explore your data
- Methods are not specific to proteomics
 - Checking Normalisation
 - Clustering
 - Scatterplots
 - Heatmaps

Exploration Plotting

- Value Distributions
 - Check how well they match
 - Peptide and Protein level
 - Adjust normalisation

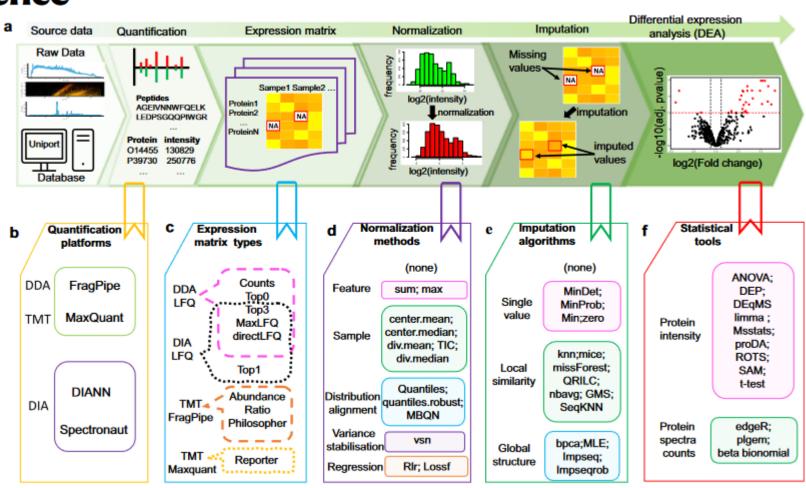
- Clustering
 - Do conditions separate
 - Evidence for batch effects
 - Variation between replicates

Scatterplots

- Detailed comparisons
- Between replicates or conditions
- Check noise and changes

Article

https://doi.org/10.1038/s41467-024-47899-w

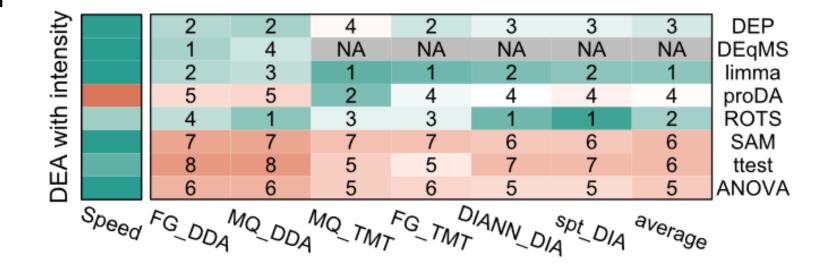

Optimizing differential expression analysis for proteomics data via high-performing rules and ensemble inference

Search Software

Quantitation method

Normalisation method

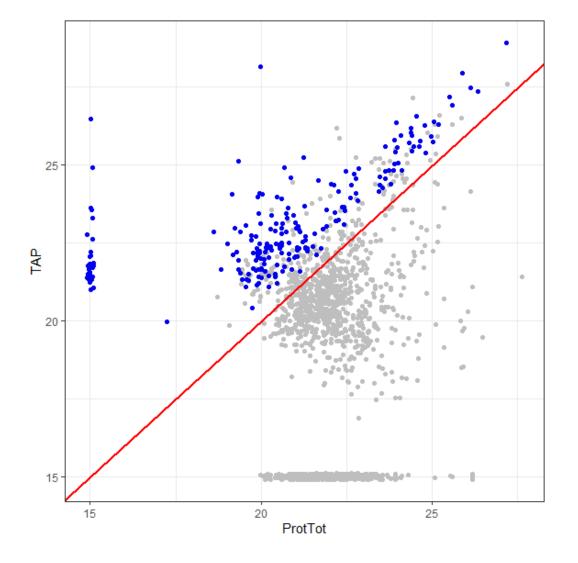
Statistical test



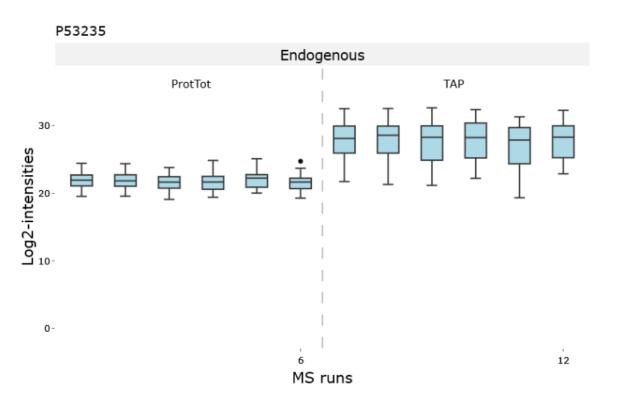
Differential Abundance Statistics

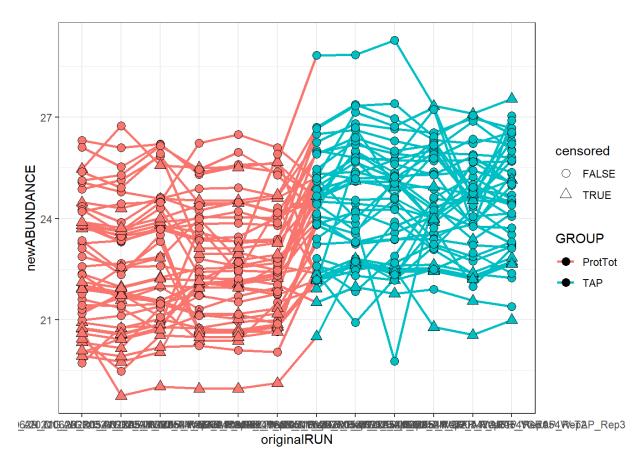
DEqMS ROTS proDA MSstats DEP

- Quantitative analysis on normalised data
- T-test based (LIMMA)
- Mixture Models (MSstats, DEqMS)


Running Differential Abundance

```
groupComparison(
  contrast.matrix = contrasts,
  data=quantified_data
) -> comparison_result
```


Protein	Label [‡]	log2FC	SE [‡]	Tvalue [‡]	DF [‡]	pvalue	adj.pvalue	issue	MissingPercentage [‡]	ImputationPercentage
P22147	TAP_vs_Total	5.769617	0.09788615	58.94212	5	2.659725e-08	8.404731e-06	NA	0.4160920	0.4160920
P53235	TAP_vs_Total	8.078808	0.19283502	41.89492	5	1.461671e-07	1.732080e-05	NA	0.3818565	0.3818565
Q06218	TAP_vs_Total	1.635424	0.04371649	37.40978	5	2.570745e-07	2.215515e-05	NA	0.4427083	0.4427083
Q06344	TAP_vs_Total	3.365503	0.09811743	34.30077	5	3.961302e-07	2.347071e-05	NA	0.5468750	0.5468750
Q06631	TAP_vs_Total	3.684366	0.10468402	35.19512	5	3.484518e-07	2.347071e-05	NA	0.4700000	0.4700000
P42846	TAP_vs_Total	4.162211	0.13243818	31.42758	5	6.124203e-07	3.225414e-05	NA	0.4102564	0.4102564
Q12460	TAP_vs_Total	1.972058	0.07025700	28.06921	5	1.074646e-06	3.918325e-05	NA	0.2663043	0.2663043
P38697	TAP_vs_Total	1.307888	0.01209679	108.11866	3	1.744355e-06	5.011058e-05	NA	0.4333333	0.2666667
P25555	TAP_vs_Total	3.192777	0.14490502	22.03359	5	3.575532e-06	8.547949e-05	NA	0.3659420	0.3659420


Plotting Hits

More Detailed Information

Exercise

Running MSstats in R